Determinants of mitotic catastrophe on abrogation of the G2 DNA damage checkpoint by UCN-01.

نویسندگان

  • Kin Fan On
  • Yue Chen
  • Hoi Tang Ma
  • Jeremy P H Chow
  • Randy Y C Poon
چکیده

Genotoxic stress such as ionizing radiation halts entry into mitosis by activation of the G(2) DNA damage checkpoint. The CHK1 inhibitor 7-hydroxystaurosporine (UCN-01) can bypass the checkpoint and induce unscheduled mitosis in irradiated cells. Precisely, how cells behave following checkpoint abrogation remains to be defined. In this study, we tracked the fates of individual cells after checkpoint abrogation, focusing in particular on whether they undergo mitotic catastrophe. Surprisingly, while a subset of UCN-01-treated cells were immediately eliminated during the first mitosis after checkpoint abrogation, about half remained viable and progressed into G(1). Both the delay of mitotic entry and the level of mitotic catastrophe were dependent on the dose of radiation. Although the level of mitotic catastrophe was specific for different cell lines, it could be promoted by extending the mitosis. In supporting this idea, weakening of the spindle-assembly checkpoint, by either depleting MAD2 or overexpressing the MAD2-binding protein p31(comet), suppressed mitotic catastrophe. Conversely, delaying of mitotic exit by depleting either p31(comet) or CDC20 tipped the balance toward mitotic catastrophe. These results underscore the interplay between the level of DNA damage and the effectiveness of the spindle-assembly checkpoint in determining whether checkpoint-abrogated cells are eliminated during mitosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic Discovery Determinants of Mitotic Catastrophe on Abrogation of the G2 DNA Damage Checkpoint by UCN-01

Genotoxic stress such as ionizing radiation halts entry into mitosis by activation of the G2 DNA damage checkpoint. The CHK1 inhibitor 7-hydroxystaurosporine (UCN-01) can bypass the checkpoint and induce unscheduled mitosis in irradiated cells. Precisely, how cells behave following checkpoint abrogation remains to be defined. In this study, we tracked the fates of individual cells after checkpo...

متن کامل

DNA Damage and Cellular Stress Responses Inhibition of Eg5 Acts Synergistically with Checkpoint Abrogation in Promoting Mitotic Catastrophe

The G2 DNA damage checkpoint is activated by genotoxic agents and is particularly important for cancer therapies. Overriding the checkpoint can trigger precocious entry into mitosis, causing cells to undergo mitotic catastrophe. But some checkpoint-abrogated cells can remain viable and progress into G1 phase, which may contribute to further genome instability. Our previous studies reveal that t...

متن کامل

Inhibition of Eg5 acts synergistically with checkpoint abrogation in promoting mitotic catastrophe.

The G(2) DNA damage checkpoint is activated by genotoxic agents and is particularly important for cancer therapies. Overriding the checkpoint can trigger precocious entry into mitosis, causing cells to undergo mitotic catastrophe. But some checkpoint-abrogated cells can remain viable and progress into G(1) phase, which may contribute to further genome instability. Our previous studies reveal th...

متن کامل

Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation.

The novel concept of anticancer treatment termed "G(2) checkpoint abrogation" aims to target p53-deficient tumor cells and is currently explored in clinical trials. The anticancer drug UCN-01 is used to abrogate a DNA damage-induced G(2) cell cycle arrest leading to mitotic entry and subsequent cell death, which is poorly defined as "mitotic cell death" or "mitotic catastrophe." We show here th...

متن کامل

Potentiation of cytotoxicity of topoisomerase i poison by concurrent and sequential treatment with the checkpoint inhibitor UCN-01 involves disparate mechanisms resulting in either p53-independent clonogenic suppression or p53-dependent mitotic catastrophe.

UCN-01 is a potent inhibitor of the S- and G2-M-phase cell cycle checkpoints by targeting chk1 and possibly chk2 kinases. It has been shown in some, but not all, instances that UCN-01 potentiates the cytotoxicity of DNA-damaging agents selectively in p53-defective cells. We have investigated this concept in HCT116 colon cancer cells treated with the topoisomerase I poison SN-38. SN-38 alone ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2011